Lattices from tight equiangular frames
نویسندگان
چکیده
We consider the set of all linear combinations with integer coefficients of the vectors of a unit tight equiangular (k, n) frame and are interested in the question whether this set is a lattice, that is, a discrete additive subgroup of the k-dimensional Euclidean space. We show that this is not the case if the cosine of the angle of the frame is irrational. We also prove that the set is a lattice for n = k + 1 and that there are infinitely many k such that a lattice emerges for n = 2k. We dispose of all cases in dimensions k at most 9. In particular, we show that a (7,28) frame generates a strongly eutactic lattice and give an alternative proof of Roland Bacher's recent observation that this lattice is perfect.
منابع مشابه
Equiangular tight frames from Paley tournaments
We prove the existence of equiangular tight frames having n = 2d − 1 elements drawn from either Cd or Cd−1 whenever n is either 2k − 1 for k ∈ N, or a power of a prime such that n ≡ 3 mod 4. We also find a simple explicit expression for the prime power case by establishing a connection to a 2d-element equiangular tight frame based on quadratic residues. © 2007 Elsevier Inc. All rights reserved....
متن کاملConstructing a Large Family of Equiangular Tight Frames
We provide a new method for constructing equiangular tight frames (ETFs). This method is valid in both the real and complex settings, and shows that many of the few previously-known examples of ETFs are but the first representatives of infinite families of such frames. The construction is extremely simple: a tensor-like combination of a Steiner system and a regular simplex. It provides great fr...
متن کاملTremain equiangular tight frames
We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.
متن کاملTables of the existence of equiangular tight frames
A Grassmannian frame is a collection of unit vectors which are optimally incoherent. The most accessible (and perhaps most beautiful) of Grassmannian frames are equiangular tight frames (ETFs); indeed, there are infinite families of known ETFs, whereas only finitely many non-ETF Grassmannian frames are known to date. This paper surveys every known construction of ETFs and tabulates existence fo...
متن کاملQuasi-Equiangular Frame (QEF) : A New Flexible Configuration of Frame
Frame theory is a powerful tool in the domain of signal processing and communication. Among its numerous configurations, the ones which have drawn much attention recently are Equiangular Tight Frames(ETFs) and Grassmannian Frames. These frames both have optimality in coherence, thus bring robustness and optimal performance in applications such as digital fingerprint, erasure channels, and Compr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016